文本纠错任务在审查、写作任务中至关重要,以前的纠错大多采用小模型进行训练,例如BART、T5、BERT等,但是小模型的泛化性较差,需要在不同领域训练不同的小模型进行纠错,为此我们使用200万数据进行大模型的训练,经过验证我们在
GitHub – masr2000/NaCGEC数据集上,F1值比华为高17个点,遥遥领先,下面从三个方面进行详细的技术说明:数据集(涵盖业界所有的开源数据)、评估结果、使用方法,欢迎star,后续会持续更新纠错模型。
声明:小猿资源站是一个资源分享和技术交流平台,本站所发布的一切破解补丁、注册机和注册信息及软件的解密分析文章仅限用于学习和研究目的;不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负。本站信息来自网络,版权争议与本站无关。您必须在下载后的24个小时之内,从您的电脑中彻底删除上述内容。如果您喜欢该程序,请支持正版软件,购买注册,得到更好的正版服务。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。