在上一篇中我们使用全连接网络,来构建我们的手写数字图片识别应用,取得了很好的效果。但是值得注意的是,在实验的最后,最后我们无论把 LOSS 优化到如何低,似乎都无法在测试数据集 test data 中提高我们的识别准确度,你可以回头尝试全连接的网络连接,新增多几层 layer ,来尝试是否能把准确率提升至90%以上,而我自己本地尝试的结果就是识别的准确率只有83%。那我们能不能优化一下网络结构,来让准确度更高呢?有办法的,那就是CNN卷积神经网络。关于CNN卷积神经网络的学习,我打算分为两篇,本文主要是为了补充学习CNN所需要的前置知识,如果你了然于胸可以直接跳过。